Currently in Ethiopia, pollution and environmental damage brought on by waste increased along with industrialization, urbanization, and global population levels. Waste sorting, which is still done improperly from the household level to the final disposal site, is a prevalent issue. Real-time and accurate waste detection in image and video data is a crucial and difficult task in the intelligent waste management system. Accurately locating and classifying these wastes is challenging, particularly when there are various types of waste present. So, a single-stage YOLOv4-waste deep neural network model is proposed. In this study, a deep learning algorithm for object detection using YOLOv4 and YOLOv4-tiny is trained and evaluated. A total of 3529 waste images are divided into 7 classes, which include, cardboard, glass, metal, organic, paper, plastic, and trash. Each model uses three various inputs throughout the testing phase, including input images, videos, and webcams. Experiments with hyper-parameters on subdivision values and mosaic data augmentation were also done in the YOLOv4-tiny model. The outcome demonstrates that YOLOv4 performs better than YOLOv4-tiny for object detection specifically for waste detection. The outcome shows that YOLOv4 performs better than YOLOv4-tiny for object detection, even if YOLOv4-tiny’s scores are higher in terms of computing speed. The best results from the YOLOv4 model reach mAP 91.25%, precision 0.91, recall 0.88, F1-score 0.89, and Average IoU 81.55%, while the best YOLOv4-tiny results are mAP 82.02%, precision 0.75, recall 0.76, F1-score 0.75, and Average IoU 63.59%. This research also proves that the models with smaller subdivision values and using a mosaic have optimal performance.
Keywords:
Published on: Aug 31, 2023 Pages: 52-60
Full Text PDF
Full Text HTML
DOI: 10.17352/aest.000070
CrossMark
Publons
Harvard Library HOLLIS
Search IT
Semantic Scholar
Get Citation
Base Search
Scilit
OAI-PMH
ResearchGate
Academic Microsoft
GrowKudos
Universite de Paris
UW Libraries
SJSU King Library
SJSU King Library
NUS Library
McGill
DET KGL BIBLiOTEK
JCU Discovery
Universidad De Lima
WorldCat
VU on WorldCat
PTZ: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."