ISSN: 2641-3094
Global Journal of Ecology
Commentary       Open Access      Peer-Reviewed

Criticism of the Prevailing Belief that Wood Combustion is CO2 - Neutral

Frank Diederichs*

Rigas Fereou 3, 66100 Drama/Sitagroi, Greece

*Corresponding authors: Frank Diederichs, Rigas Fereou 3, 66100 Drama/Sitagroi, Greece, E-mail: [email protected]; [email protected]
Received: 23 January, 2025 | Accepted: 10 February, 2025 | Published: 11 February, 2025

Cite this as

Diederichs F. Criticism of the Prevailing Belief that Wood Combustion is CO2 - Neutral. Glob J Ecol. 2025;10(1):001-003. Available from: 10.17352/gje.000108

Copyright

© 2025 Diederichs F. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Any fuel of plant origin that has grown by absorbing CO2 from the atmosphere via photosynthesis burns in a CO2-neutral way since virtually its entire carbon content is recycled into the atmosphere during combustion. This or very similar formulations are often used to explain the supposed CO2 neutrality of burNing plant biomass. This statement would be true if the CO2 produced was released into the atmosphere at the same rate as it disappears from it. But as is well known, this is not the case nowadays. At present, CO2in the atmosphere is mainly produced by burNing fossil fuels such as coal, oil, and natural gas. It is mainly removed from the atmosphere through photosynthesis and distribution in seawater. However, these processes are far from sufficient to remove CO2 from the atmosphere at a sufficient rate to achieve CO2 neutrality.

Obviously, the above idea of CO2 neutrality is based on the completely arbitrary assumption that only the CO2 produced by burNing wood (as an example of plant biomass) is recycled in a sustainably managed forest via tree growth, while the CO2 from other combustion sources is not available for photosynthesis. In the atmosphere, however, more or less all of the CO2 emissions from all sources are mixed so it must be assumed that the amounts used to regrow the forest also correspond to this atmospheric mix from different sources. This means that due to its low percentage in the mix, the CO2 from wood burNing only contributes a small degree to regrowth, while CO2 from fossil sources, due to their much greater relative frequency in the mix, are also the main contributors to photosynthesis and therefore to plant growth.

To emphasize this one more time, CO2neutrality in the atmosphere would be present if in a given time interval the rate of carbon entry (in Gt C)/year or Pmol/year) into the atmosphere were equal to the rate of carbon exit (in (Gt C/year or Pmol/year) from the atmosphere into a sink such as photosynthesis. It is impossible, to yield such a result, which can be mathematically formulated as (for CO2 neutrality), simply from the carbon cycling associated with wood combustion alone. In the presence of other CO2 sources, it is imperative that these are also included in the neutrality analysis.

Of course, all CO2 molecules are identical and therefore indistinguishable, regardless of which carbon-contaiNing fuel source they originate from. This applies to their uptake in photosynthesis as well as their distribution in (sea) water.

The following example should serve to further explain the relationships for the CO2 changes in the atmosphere, using data from Friedlingstein, et al. [1].

For the atmospheric amount of CO2 a value of NOatm = 74.827 Pmol or 898.75 Gt C has been found using a ppm value of 423. The quantity of carbon bound in the vegetation is then NOwood = 0.514 74.827 = 38.483 Pmol or 462.22 Gt C [1]. To a first approximation, the atmosphere can be regarded as an ideal gas of reference volume V atm ref MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGwbWaa0baaSqaaiaadggacaWG0bGaamyBaaqaaiaadkhacaWGLbGaamOzaaaaaaa@42A6@ (288.15 K).

According to L. Boltzmann, all particle types of gas are arranged in such a way that the energy distribution with the maximum probability is adopted spontaneously [2,3]. For an ideal gas in a given volume, this means that the maximum multiplicity is achieved when the entire volume is homogeneously filled with the respective particles. This applies to all particle types in the atmosphere, including CO2 molecules from different sources. Consequently, all CO2 molecules must be present as a complete mixture. This in turn means that CO2 molecules enter the efflux reactions of the atmosphere in the same proportions, as they are present in the atmospheric mixture. These proportions are given by the known influxes from different sources.

All emissions (in Gt C/yr) are constant, and the total CO2-efflux (absolute values for effluxes) with ELsink = 2.9 (land sink) and Eocsink = 3.0 Gt C/yr (ocean sink) is given by Jout = ELsink+ Eocsink Gt C/yr. ELsink contains mainly the efflux Jps via photosynthesis. The two influxes are Efos = 9.3 (fossil emission) and Jwoodb = 0.8 ELuc Gt C/yr (wood burNing of 0.8 ELuc is an arbitrary assumption). ELuc = 0.9 (land use change) contains Jwoodb plus Jdef (deforestation). The total influx then is given by Jin = Efos+ Jwoodb Gt C/yr. The respective masses of CO2 in the atmosphere after a given time t are, for example, Nfosb = Efos×t and Nwoodb = Nwoodb×t Gt C. The total amount that has entered the atmosphere during time t is given by Nin = Nfosb+ Nwoodb Gt C.

For the derivation of the following results, it was assumed that due to the indistinguishability of the CO2 molecules originating from different sources, their probability of entering the photosynthesis reaction, for example, depends on their relative frequency in the atmospheric mix. If, for instance, there is about 13 times more CO2 of fossil origin in the mix than from wood combustion (with Nwoodb/Nim= Jwoodb×t/(Efos+Jwoodb)×t, Nfosb/Nin = Jfosb×t/(Efos+Jwoodb)×t yielding Nfosb/Nwoodb = Jfosb/Jwoodb = 12.917), then in a given time interval 13 times more fossil CO2 than CO2 from wood burNing will be removed from the atmosphere via this pathway.

The time-related change of the total mass of CO2 in the atmosphere (GATM in Friedlingstein's publication [1]) is given by

ΔC O 2 Δt = E fos +0.8 E Luc E Lsink E ocean  ( in GtC/yr ),       (1) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaeuiLdqKaam4qaiaad+eakmaaBaaaleaajugibiaadkdaaSqabaaakeaajugibiabfs5aejaadshaaaGaeyypa0JaamyraOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbaaleqaaKqzGeGaey4kaSIaaGimaiaac6cacaaI4aGaaGPaVlaadweakmaaBaaaleaajugibiaadYeacaWG1bGaam4yaaWcbeaajugibiabgkHiTiaadweakmaaBaaaleaajugibiaadYeaciGGZbGaaiyAaiaac6gacaWGRbaaleqaaKqzGeGaeyOeI0IaamyraOWaaSbaaSqaaKqzGeGaam4BaiaadogacaWGLbGaamyyaiaad6gaaSqabaqcLbsacaqGGaGcdaqadaqaaKqzGeGaaeyAaiaab6gacaqGGaGaae4raiaabshacaWGdbGaai4laiaabMhacaqGYbaakiaawIcacaGLPaaajugibiaacYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGPaaaaa@753D@

the effluxes e.g. via photosynthesis (with Jwoodb = 0.8 ELuc) are

Jwoo d ps = N woodb N in × J ps = J woodb ×t ( E fos + J woodb )×t × J ps =0.284, and      (1a) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaajugibiaadQeacaWG3bGaam4Baiaad+gacaWGKbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaajugibiabg2da9OWaaSaaaeaajugibiaad6eakmaaBaaaleaajugibiaadEhacaWGVbGaam4BaiaadsgacaWGIbaaleqaaaGcbaqcLbsacaWGobGcdaWgaaWcbaqcLbsacaWGPbGaamOBaaWcbeaaaaqcLbsacaaMb8UaaGzaVlaaygW7cqGHxdaTcaaMc8UaamOsaOWaaSbaaSqaaKqzGeGaamiCaiaadohaaSqabaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaajugibiabgEna0kaaykW7caWG0baakeaadaqadaqaaKqzGeGaamyraOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbaaleqaaKqzGeGaey4kaSIaamOsaOWaaSbaaSqaaKqzGeGaam4Daiaad+gacaWGVbGaamizaiaadkgaaSqabaaakiaawIcacaGLPaaajugibiabgEna0kaaykW7caWG0baaaiabgEna0kaaykW7caWGkbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaajugibiabg2da9iaaicdacaGGUaGaaGOmaiaaiIdacaaI0aGaaiilaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabggacaqGPaaaaa@9577@

Jfo s ps = N fos N in × J ps = E fos ×t ( E fos + J woodb )×t × J ps = 2.6916 GtC/yr,       (1b) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaajugibiaadQeacaWGMbGaam4BaiaadohakmaaBaaaleaajugibiaadchacaWGZbaaleqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaamOtaOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbaaleqaaaGcbaqcLbsacaWGobGcdaWgaaWcbaqcLbsacaWGPbGaamOBaaWcbeaaaaqcLbsacaaMc8Uaey41aqRaaGPaVlaadQeakmaaBaaaleaajugibiaadchacaWGZbaaleqaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaamyraOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbaaleqaaKqzGeGaey41aqRaamiDaaGcbaWaaeWaaeaajugibiaadweakmaaBaaaleaajugibiaadAgacaWGVbGaam4CaaWcbeaajugibiabgUcaRiaadQeakmaaBaaaleaajugibiaadEhacaWGVbGaam4BaiaadsgacaWGIbaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHxdaTcaaMc8UaamiDaaaacaaMc8Uaey41aqRaamOsaOWaaSbaaSqaaKqzGeGaamiCaiaadohaaSqabaqcLbsacqGH9aqpcaqGGaGaaeOmaiaac6cacaqG2aGaaeyoaiaabgdacaqG2aGaaeiiaiaabEeacaqG0bGaam4qaiaac+cacaqG5bGaaeOCaiaacYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGIbGaaeykaaaa@907D@

(the photosynthesis flux Jps equals ELsink, Jwoodps+Jfosps must add up to Jps = 2.9 Gt C/yr).

These equations result from the fact that each efflux pathway takes up CO2 molecules from different sources in the same proportions as they occur in the atmospheric mixture. These are identical to those of the constant influxes, so that, for instance for the photosynthetic efflux pathway, the following proportionality equation is obtained, Jwoodps/Jps= Jwoodb/Jin.

In order to assess CO2 yield, these effluxes are now compared with the respective influxes from the corresponding sources. This is done by calculating quotients (taking absolute values for effluxes) according to

Jwoo d ps J woodb = J ps E fos + J woodb = 2.9/( 9.3+0.72 ) = 0.2894, and      (1c) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadEhacaWGVbGaam4BaiaadsgakmaaBaaaleaajugibiaadchacaWGZbaaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaaaOqaaKqzGeGaamyraOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbaaleqaaKqzGeGaey4kaSIaamOsaOWaaSbaaSqaaKqzGeGaam4Daiaad+gacaWGVbGaamizaiaadkgaaSqabaaaaKqzGeGaeyypa0JaaeiiaiaabkdacaGGUaGaaeyoaiaac+cakmaabmaabaqcLbsacaqG5aGaaiOlaiaabodacqGHRaWkcaaIWaGaaiOlaiaabEdacaqGYaaakiaawIcacaGLPaaajugibiaabccacqGH9aqpcaqGGaGaaGimaiaac6cacaqGYaGaaeioaiaabMdacaqG0aGaaiilaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabogacaqGPaaaaa@7C94@

Jfo s ps E fos = J ps E fos + J woodb = 2.9/( 9.3+0.72 ) = 0.2894.     (1d) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadAgacaWGVbGaam4CaOWaaSbaaSqaaKqzGeGaamiCaiaadohaaSqabaaakeaajugibiaadweakmaaBaaaleaajugibiaadAgacaWGVbGaam4CaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaaaOqaaKqzGeGaamyraOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbaaleqaaKqzGeGaey4kaSIaamOsaOWaaSbaaSqaaKqzGeGaam4Daiaad+gacaWGVbGaamizaiaadkgaaSqabaaaaKqzGeGaeyypa0JaaeiiaiaabkdacaGGUaGaaeyoaiaac+cakmaabmaabaqcLbsacaqG5aGaaiOlaiaabodacqGHRaWkcaaIWaGaaiOlaiaabEdacaqGYaaakiaawIcacaGLPaaajugibiaabccacqGH9aqpcaqGGaGaaGimaiaac6cacaqGYaGaaeioaiaabMdacaqG0aGaaiOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGKbGaaeykaaaa@75BD@

Although both influxes are very different, their yield quotients (via photosynthesis) are identical.

Since there is an additional efflux possibility via Eocsink, this must also be taken into account. The yield quotients via this pathway are given by

Jwoo d oc J woodb = E ocsink E fos + J woodb = 3.0/( 9.3+0.72 ) = 0.2994, and       (2a) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadEhacaWGVbGaam4BaiaadsgakmaaBaaaleaajugibiaad+gacaWGJbaaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGfbGcdaWgaaWcbaqcLbsacaWGVbGaam4yaiaadohacaWGPbGaamOBaiaadUgaaSqabaaakeaajugibiaadweakmaaBaaaleaajugibiaadAgacaWGVbGaam4CaaWcbeaajugibiabgUcaRiaadQeakmaaBaaaleaajugibiaadEhacaWGVbGaam4BaiaadsgacaWGIbaaleqaaaaajugibiabg2da9iaabccacaqGZaGaaiOlaiaaicdacaGGVaGcdaqadaqaaKqzGeGaaeyoaiaac6cacaqGZaGaey4kaSIaaGimaiaac6cacaqG3aGaaeOmaaGccaGLOaGaayzkaaqcLbsacaqGGaGaeyypa0JaaeiiaiaaicdacaGGUaGaaeOmaiaabMdacaqG5aGaaeinaiaacYcacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeyyaiaabMcaaaa@80D7@

Jfo s oc E fos = E ocsink E fos + J woodb = 3.0/( 9.3+0.72 ) = 0.2994.       (2b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaadQeacaWGMbGaam4BaiaadohakmaaBaaaleaajugibiaad+gacaWGJbaaleqaaaGcbaqcLbsacaWGfbGcdaWgaaWcbaqcLbsacaWGMbGaam4BaiaadohaaSqabaaaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaamyraOWaaSbaaSqaaKqzGeGaam4BaiaadogacaWGZbGaamyAaiaad6gacaWGRbaaleqaaaGcbaqcLbsacaWGfbGcdaWgaaWcbaqcLbsacaWGMbGaam4BaiaadohaaSqabaqcLbsacqGHRaWkcaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpcaqGGaGaae4maiaac6cacaaIWaGaai4laOWaaeWaaeaajugibiaabMdacaGGUaGaae4maiabgUcaRiaaicdacaGGUaGaae4naiaabkdaaOGaayjkaiaawMcaaKqzGeGaaeiiaiabg2da9iaabccacaaIWaGaaiOlaiaabkdacaqG5aGaaeyoaiaabsdacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeOyaiaabMcaaaa@76A8@

Both pathways (“ps” and “oc”) differ only slightly because their respective effluxes (2.9 and 3.0 Gt C/yr) have similar values. For the entire process, the result is

Jwoo d ps +Jwoo d oc J woodb = J ps + E ocsink E fos + J woodb = J out J in       (3a) = 0.2894 + 0.2994 = 0.5888, and MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaamaalaaabaqcLbsacaWGkbGaam4Daiaad+gacaWGVbGaamizaOWaaSbaaSqaaKqzGeGaamiCaiaadohaaSqabaqcLbsacqGHRaWkcaWGkbGaam4Daiaad+gacaWGVbGaamizaOWaaSbaaSqaaKqzGeGaam4BaiaadogaaSqabaaakeaajugibiaadQeakmaaBaaaleaajugibiaadEhacaWGVbGaam4BaiaadsgacaWGIbaaleqaaaaajugibiabg2da9OWaaSaaaeaajugibiaadQeakmaaBaaaleaajugibiaadchacaWGZbaaleqaaKqzGeGaey4kaSIaamyraOWaaSbaaSqaaKqzGeGaam4BaiaadogacaWGZbGaamyAaiaad6gacaWGRbaaleqaaaGcbaqcLbsacaWGfbGcdaWgaaWcbaqcLbsacaWGMbGaam4BaiaadohaaSqabaqcLbsacqGHRaWkcaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGVbGaamyDaiaadshaaSqabaaakeaajugibiaadQeakmaaBaaaleaajugibiaadMgacaWGUbaaleqaaaaakiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeyyaiaabMcaaeaajugibiabg2da9iaabccacaaIWaGaaiOlaiaabkdacaqG4aGaaeyoaiaabsdacaqGGaGaey4kaSIaaeiiaiaaicdacaGGUaGaaeOmaiaabMdacaqG5aGaaeinaiaabccacqGH9aqpcaqGGaGaaGimaiaac6cacaqG1aGaaeioaiaabIdacaqG4aGaaiilaiaabccacaqGHbGaaeOBaiaabsgaaaaa@9845@

Jfo s ps +Jfo s oc E fos = J ps + E ocsink E fos + J woodb = J out J in = 0.5888.      (3b) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadAgacaWGVbGaam4CaOWaaSbaaSqaaKqzGeGaamiCaiaadohaaSqabaqcLbsacqGHRaWkcaWGkbGaamOzaiaad+gacaWGZbGcdaWgaaWcbaqcLbsacaWGVbGaam4yaaWcbeaaaOqaaKqzGeGaamyraOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbaaleqaaaaajugibiabg2da9OWaaSaaaeaajugibiaadQeakmaaBaaaleaajugibiaadchacaWGZbaaleqaaKqzGeGaey4kaSIaamyraOWaaSbaaSqaaKqzGeGaam4BaiaadogacaWGZbGaamyAaiaad6gacaWGRbaaleqaaaGcbaqcLbsacaWGfbGcdaWgaaWcbaqcLbsacaWGMbGaam4BaiaadohaaSqabaqcLbsacqGHRaWkcaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGVbGaamyDaiaadshaaSqabaaakeaajugibiaadQeakmaaBaaaleaajugibiaadMgacaWGUbaaleqaaaaajugibiabg2da9iaabccacaaIWaGaaiOlaiaabwdacaqG4aGaaeioaiaabIdacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGIbGaaeykaaaa@83F8@

A quotient value of 1.0 would mean that the total CO2 efflux is equal to the total CO2 influx (Jout = Jin). Then CO2 neutrality would be present and the CO2 yield of the atmosphere would be zero Gt C. The sum of all effluxes is then equal to the sum of all influxes, that is, Jout = Jin, or Jout / Jin = 1.0. If Jout / Jin < 1.0, no CO2 neutrality can occur and CO2 would accumulate in the atmosphere. If, on the other hand, Jout / Jin > 1.0, the atmosphere would lose CO2.

Under current conditions, only about 29% of the CO2 produced by wood burNing (first influx pathway) is removed from the atmosphere via photosynthesis (first efflux pathway). The same applies to the CO2 produced from fossil fuels (second influx pathway). Again, only 29% of this source is removed via photosynthesis. About 30% of the total CO2 is taken up by seawater (second efflux pathway). This is followed by a drop in pH, which may be lethal for many marine organisms. The remainder of about 41% remains in the atmosphere and adds up to the CO2 accumulated over previous years.

The results show that the flux ratios of efflux and influx for a given efflux pathway, such as photosynthesis, are the same for all CO2 sources. This can be verified by adding further CO2 sources and/or sinks. For example, an additional combustion of synthetic gasoline (e-fuel) produced from atmospheric CO2 and burned instead of fossil gasoline (a third efflux pathway “sy” is thus created in concert with the additional efflux Jsyn and influx Jsynb, Jsyn = Jsynb = 0.1 Jps =0.29 Gt C/yr) yields,

Jwoo d ps J woodb = Jfo s ps J fosb = Jsy n ps J synb = J ps J in = 0.2894,     (4a) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadEhacaWGVbGaam4BaiaadsgakmaaBaaaleaajugibiaadchacaWGZbaaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaamOzaiaad+gacaWGZbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaam4CaiaadMhacaWGUbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaam4CaiaadMhacaWGUbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamyAaiaad6gaaSqabaaaaKqzGeGaeyypa0JaaeiiaiaaicdacaGGUaGaaeOmaiaabIdacaqG5aGaaeinaiaacYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG0aGaaeyyaiaabMcaaaa@7F72@

Jwoo d oc J woodb = Jfo s oc J fosb = Jsy n oc J synb = J oc J in = 0.2994, and      (4b) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadEhacaWGVbGaam4BaiaadsgakmaaBaaaleaajugibiaad+gacaWGJbaaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaamOzaiaad+gacaWGZbGcdaWgaaWcbaqcLbsacaWGVbGaam4yaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaam4CaiaadMhacaWGUbGcdaWgaaWcbaqcLbsacaWGVbGaam4yaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaam4CaiaadMhacaWGUbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGVbGaam4yaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamyAaiaad6gaaSqabaaaaKqzGeGaeyypa0JaaeiiaiaaicdacaGGUaGaaeOmaiaabMdacaqG5aGaaeinaiaacYcacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabsdacaqGIbGaaeykaaaa@8332@

Jwoo d sy J woodb = Jfo s sy J fosb = Jsy n sy J synb = J sy J in = 0.0289.      (4c) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadEhacaWGVbGaam4BaiaadsgakmaaBaaaleaajugibiaadohacaWG5baaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaamOzaiaad+gacaWGZbGcdaWgaaWcbaqcLbsacaWGZbGaamyEaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaam4CaiaadMhacaWGUbGcdaWgaaWcbaqcLbsacaWGZbGaamyEaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaam4CaiaadMhacaWGUbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGZbGaamyEaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamyAaiaad6gaaSqabaaaaKqzGeGaeyypa0JaaeiiaiaaicdacaGGUaGaaGimaiaabkdacaqG4aGaaeyoaiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabogacaqGPaaaaa@8040@

This results in a slightly increased flux quotient formed from all effluxes and influxes,

J out J in = J ps + J oc + J sy J in = 0.2894+0.2994+0.0289 = 0.618.     (4d) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaam4BaiaadwhacaWG0baaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGPbGaamOBaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaajugibiabgUcaRiaadQeakmaaBaaaleaajugibiaad+gacaWGJbaaleqaaKqzGeGaey4kaSIaamOsaOWaaSbaaSqaaKqzGeGaam4CaiaadMhaaSqabaaakeaajugibiaadQeakmaaBaaaleaajugibiaadMgacaWGUbaaleqaaaaajugibiabg2da9iaabccacaaIWaGaaiOlaiaabkdacaqG4aGaaeyoaiaabsdacqGHRaWkcaaIWaGaaiOlaiaabkdacaqG5aGaaeyoaiaabsdacqGHRaWkcaaIWaGaaiOlaiaaicdacaqGYaGaaeioaiaabMdacaqGGaGaeyypa0JaaeiiaiaaicdacaGGUaGaaeOnaiaabgdacaqG4aGaaiOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabsdacaqGKbGaaeykaaaa@76B7@

The same result would be produced if no synthesized fuel was burned and no fossil fuel was replaced.

The simplest way to achieve a quotient of 1.0 (CO2 neutrality) may be realized by reducing drastically Jfosb. Reducing this CO2 influx by a factor of 0.557 yields,

Jwoo d ps J woodb = Jfo s ps J fosb = J ps J in = 0.4915,     (5a) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadEhacaWGVbGaam4BaiaadsgakmaaBaaaleaajugibiaadchacaWGZbaaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaamOzaiaad+gacaWGZbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamyAaiaad6gaaSqabaaaaKqzGeGaeyypa0JaaeiiaiaaicdacaGGUaGaaeinaiaabMdacaqGXaGaaeynaiaacYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG1aGaaeyyaiaabMcaaaa@70B4@

Jwoo d oc J woodb = Jfo s oc J fosb = J oc J in = 0.5085, and      (5b) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadEhacaWGVbGaam4BaiaadsgakmaaBaaaleaajugibiaad+gacaWGJbaaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaamOzaiaad+gacaWGZbGcdaWgaaWcbaqcLbsacaWGVbGaam4yaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGVbGaam4yaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamyAaiaad6gaaSqabaaaaKqzGeGaeyypa0JaaeiiaiaaicdacaGGUaGaaeynaiaaicdacaqG4aGaaeynaiaacYcacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqGIbGaaeykaaaa@748A@

J out J in = J ps + J oc J in = 1.0. MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaam4BaiaadwhacaWG0baaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGPbGaamOBaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaajugibiabgUcaRiaadQeakmaaBaaaleaajugibiaad+gacaWGJbaaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGPbGaamOBaaWcbeaaaaqcLbsacqGH9aqpcaqGGaGaaeymaiaac6cacaaIWaGaaiOlaaaa@5918@

The same result can be also produced by adding an CO2 efflux pathway (“sy”). Increasing the CO2 efflux by the addition of a CO2 utilizing reaction (Jsyn=1.421 Jps, Jsynb=0) yields

Jwoo d ps J woodb = Jfo s ps J fosb = J ps J in = 0.2894,      (6a) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadEhacaWGVbGaam4BaiaadsgakmaaBaaaleaajugibiaadchacaWGZbaaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaamOzaiaad+gacaWGZbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamyAaiaad6gaaSqabaaaaKqzGeGaeyypa0JaaeiiaiaaicdacaGGUaGaaeOmaiaabIdacaqG5aGaaeinaiaacYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOnaiaabggacaqGPaaaaa@715C@

Jwoo d oc J woodb = Jfo s oc J fosb = J oc J in = 0.2994,     (6b) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadEhacaWGVbGaam4BaiaadsgakmaaBaaaleaajugibiaad+gacaWGJbaaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaamOzaiaad+gacaWGZbGcdaWgaaWcbaqcLbsacaWGVbGaam4yaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGVbGaam4yaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamyAaiaad6gaaSqabaaaaKqzGeGaeyypa0JaaeiiaiaaicdacaGGUaGaaeOmaiaabMdacaqG5aGaaeinaiaacYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG2aGaaeOyaiaabMcaaaa@7088@

Jwoo d sy J woodb = Jfo s sy J fosb = J sy J in = 0.4113, and      (6c) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaiaadEhacaWGVbGaam4BaiaadsgakmaaBaaaleaajugibiaadohacaWG5baaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWG3bGaam4Baiaad+gacaWGKbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGaamOzaiaad+gacaWGZbGcdaWgaaWcbaqcLbsacaWGZbGaamyEaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamOzaiaad+gacaWGZbGaamOyaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGZbGaamyEaaWcbeaaaOqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaamyAaiaad6gaaSqabaaaaKqzGeGaeyypa0JaaeiiaiaaicdacaGGUaGaaeinaiaabgdacaqGXaGaae4maiaacYcacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabAdacaqGJbGaaeykaaaa@74CA@

J out J in = J ps + J oc + J sy J in = 1.0.      (6d) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmqr1ngBPrgitLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaKqzGeGaamOsaOWaaSbaaSqaaKqzGeGaam4BaiaadwhacaWG0baaleqaaaGcbaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGPbGaamOBaaWcbeaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWGkbGcdaWgaaWcbaqcLbsacaWGWbGaam4CaaWcbeaajugibiabgUcaRiaadQeakmaaBaaaleaajugibiaad+gacaWGJbaaleqaaKqzGeGaey4kaSIaamOsaOWaaSbaaSqaaKqzGeGaam4CaiaadMhaaSqabaaakeaajugibiaadQeakmaaBaaaleaajugibiaadMgacaWGUbaaleqaaaaajugibiabg2da9iaabccacaqGXaGaaiOlaiaaicdacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabAdacaqGKbGaaeykaaaa@64E7@

As has been shown [4,5], such a reaction could be realized by electrochemical reduction of atmospheric CO2 to graphene-like carbon. Such a CO2-consuming reaction seems particularly suitable for reducing the CO2 content of the atmosphere on a large scale for two reasons: the reduction only to C requires significantly less energy than the reduction to e-fuel (hydrocarbon), for example, and the resulting carbon is non-hazardous and hence storable.

With regard to wood burNing for energy supply, it seems particularly worth mentioNing that this process emits about twice the amount of CO2 compared to natural gas combustion with the same energy output. In addition, wood combustion is known to be extremely harmful to humans and possibly also to many aNimals and plants.

In summary, it can be stated that fossil fuels and fuels of plant origin, such as wood, do not differ in terms of their atmospheric CO2 yield. Consequently, their respective ability to influence CO2 neutrality given the same CO2 production rate must be also identical. This is not surprising, as it is always the same molecule that is released into and removed from the atmosphere, even if the involved processes take place via several different CO2 input sources and output pathways. Only the influxes and effluxes of this molecule over the same time interval are decisive for the temporal change in the atmosphere (ΔC O 2 atm / Δt ) MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYdf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaamaalyaabaqcLbsacaGGOaGaeuiLdqKaam4qaiaad+eakmaaDaaaleaajugibiaadkdaaSqaaKqzGeGaamyyaiaadshacaWGTbaaaaGcbaqcLbsacqqHuoarcaWG0baaaiaacMcaaaa@44B6@ and consequently also for CO2 neutrality.

The statement that wood burNing can only release that amount of CO2 that it has already absorbed from the atmosphere through photosynthesis over the years as it grows, as catchy as such a statement may be for many scientists, bears absolutely no relationship to the amount of CO2 in the atmosphere. It is simply inappropriate and leads to the erroneous conclusion that wood burNing is CO2 neutral.

  1. Friedlingstein P, Jones MW, O'Sullivan M, Andrew RM, Bakker DCE, Hauck J, et al. Global Carbon Budget 2021. Earth Syst Sci Data. 2022;14:1917-2005. Available from: https://essd.copernicus.org/articles/14/1917/2022/
  2. Alonso M, Finn EJ. University Physics Volume III Quantum and Statistical Physics. Amsterdam, London, Manila, Singapore, Sidney, Tokyo: Addison-Wesley; 1968;434-456. Available from: https://scirp.org/%28S%28351jmbntvnsjt1aadkposzje%29%29/reference/referencespapers?referenceid=3655128
  3. Dill K, Bromberg S. Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience. New York: Garland Science; 2010;81-90. Available from: https://doi.org/10.4324/9780203809075
  4. Esrafilzadeh D, Zavabeti A, Jalili R, Atkin P, Choi J, Carey BJ, Brkljača R, et al. Room temperature reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat Commun. 2019;10:865. Available from: https://www.nature.com/articles/s41467-019-08824-8
  5. Daeneke T, Khoshmanesh K, Mahmood N, de Castro IA, Esrafilzadeh D, Barrow SJ, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev. 2018;47(11):4073-4111. Available from: https://pubs.rsc.org/en/content/articlelanding/2018/cs/c7cs00043j
 


Article Alerts

Subscribe to our articles alerts and stay tuned.


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.



Help ?