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Abstract

The current study examines the generation and propagation of a Third order solitary water wave along 
the channel. Surface displacement and wave profi le prediction challenges are interesting subjects in the 
fi eld of marine engineering and many researchers have tried to investigate these parameters. To study the 
wave propagation problem, here, fi rstly the meshless Incompressible Smoothed Particle Hydrodynamics 
(ISPH) numerical method is described. Secondly, the boundary condition handling method, discretization, 
timestep selection and geometry provitions are presented. The numerical model is then used to simulate 
solitary wave propagation along the fi xed depth channel. Here two still water depths of h = 0.2 m and h 
= 0.3 m are assumed and the dimensionless height of desired wave ranging from   = 0.1 to  = 0.6 are 
simulated. The numerical results show that studied Grimshaw Third order method can track the wave 
profi le and it has acceptable relative variation for 5 seconds after the wave propagation, about 10%. In 
general, the numerical model gives satisfactory results for the wave kinematics.
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Introduction

Over the past few decades, offshore structures, such as 
oil platforms, offshore wind-power plants, have been in 
rapid growth in coastal and deep ocean regions, and wave-
structure interaction has long been a strong interest in coastal 
and offshore engineering. A thorough understanding of the 
interaction of waves with offshore structures is vital in the safe 
and design of such structures. In addition, the fl ow fi eld near 
the structures is helpful to understand the scour, sediment 
transport process in the coastal regions. In designing these 
structures, it is critical to be able to calculate wave forces acting 
on each individual structure.

Information on wave forces can be obtained by means 
of laboratory experiments or numerical simulations. Since 
laboratory experiments are usually constrained by the physical 
dimensions of laboratory facilities, it is not very often feasible 
to perform extensive parameter studies (e.g., variation of 
water depth, wave parameters, breaker type, etc.) even if the 
costs are of no concern. The alternative is to use numerical 
simulations as supplements to laboratory experiments, where 
accurate numerical simulations will also provide much more 
detailed insights into the physical processes that could not be 
achieved by experimental approach. In other words, a limited 
numbers of experiments can be designed so that the laboratory 
data can be effectively used to validate numerical models. The 
validated numerical models are then used to simulate scenarios 
with much wider range of physical parameters of interest.

So far, wide range of the numerical simulation models 
developed for wave propagation as the key concept in the 
maritime engineering which have been built upon the Navier-
Stokes equations. One of these methods is the SPH method 
that has gradually matured over time into a suitable tool 
for computational fl uid dynamics because of its fl exibility 
to simulate complex problems such as fl ow through porous 
medium [1], multi-phase fl ows [2-4], heat conduction [5], 
free surface problems [6-8], fl uid structure interactions 
[9,10], fuel cell [11], etc. However, compared with the Finite 
Difference (FD) or Finite Volume (FV) methods, SPH is still a 
relatively novel method in computational fl uid dynamics and 
its shortcomings are still being improved. Shao and Lo [12], 
introduced ISPH algorithm based on the projection scheme. 
Numerical results have shown that ISPH produces reasonable 
accurate predictions of velocity and forces on solids.

Solitary wave generation is a traditional benchmark for 
numerical wave model tests. It is a permanent progressing wave 
form consisting of a single elevation above the undisturbed 
surface that propagates without the change of form on a 
constant still water depth over a fl at bottom. A wide variety of 
analytical theories have been introduced for the solitary wave 
generation. It was fi rst reported by Russell [13], who made 
remarkable experiments and gave an empirical relationship 
for the wave speed, which was later established theoretically, 
to the lowest order by Boussinesq [14] and Rayleigh [15], as 
part of an overall approximate solution. Since then, there have 
been several attempts to improve upon this solution, e.g. see 
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[16-18]. Of the approximate solutions, several methods for 
the solitary wave have obtained series expansions in terms 
of wave amplitude, these being taken as far as the third order 
Grimshaw. He considered the one-dimensional modulations 
formed on the Boussinesq solitary wave and obtained third 
order equations analogous to those used by Boussinesq for 
the case of constant undisturbed depth in the higher order 
form [19]. Furthermore, an asymptotic solution was presented 
which described a slowly varying solitary wave [20]. An early 
work on WCSPH for solitary wave was done by Monaghan [21], 
while Lo and Shao used ISPH to generate solitary waves [22]. In 
this study, an ISPH method will be used to simulate the solitary 
wave generation and propagation in constant water depth.

Governing equations

The motion of a continuum in the Lagrangian description 
subjected to the action of body force in the isothermal condition, 
is represented by the continuity equation:

i

i

vD
Dt x
   


                    (1)

and the momentum equation:
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Where p is density, t is time, v i is the velocity vector, xi is 

the position vector, fi  is the body force vector, ij is the stress 
tensor and the notation implies summation over repeated 
indices. The stress tensor can be decomposed into deviatoric 
viscous stress tensor ij and isotropic pressure  p , according to 
the following equation:

ij ij ijp                  (3)

Where ij is the Kronecker delta. Pressure can be formally 
defi ned by the equation of state in the compressible fl ows, while 
for incompressible fl ows, it is derived from the divergence free 
condition of the velocity fi eld. Assuming an incompressible 
Newtonian fl uid, the continuity Equation (1) reduces to:

. 0u


                     (4) 

and the momentum Equation (2) will be:

D 1 .
Dt

u p v u F



  

        
 

            (5)

Where  is the kinematic viscosity. The conventional 
incompressible approach deals with pressure and velocity as 
primitive variables. The classical projection method [23] is used 
to calculate the pressure fi eld and enforce incompressibility, 
simultaneously. The discretized form of the momentum 
equation is split into two parts. The fi rst being the prediction 
step and is based on viscous and body forces. In this step, the 
intermediate velocity fi eld *u


   i s obtained from velocity at (n)

th time step:
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n n
u u u F
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In each time step, the intermediate velocity fi eld is 
calculated for fl uid and boundary particles. In the second step, 

correction step, pressure force is included:

 
 

1 *
11

n
nu u p

t 

   
     

              (7)

The intermediate velocity fi eld is usually not divergence 
free but this is imposed upon  1n

u


. Hence, the intermediate 
velocity is projected on the divergence free space by taking the 
divergence of Equation (7) as:
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             (8)

where the 2 is the Laplacian operator. Once the pressure 
is obtained from pressure Poisson Equation (8), the velocity 
vector is updated by using the computed new pressure gradient:
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Finally, particles are moved according to this corrected 
velocity as:

   
 1

1
n

n nr r u t
                               (10)

SPH interpolation

The foundation of mesh free SPH method is based on 
integral interpolants which represents that any fi eld variable 
X can be calculated over a set of SPH particles on domain of 
interest in terms of its values by taking a good interpolation 
kernel function. The exact integral representation of fi eld 
variable X is:

     ' ' 'X X d


 r r r r r                     (11)

Where (r – r′) is Dirac delta function and Ω represents the 
computational domain. Equation (11) can be represented by 
defi ning a proper kernel function, W, with effective smoothing 
length h as:

     ' ' 'X X W d


 r r r r r                             (12)

In discrete notation, this approximation leads to the 
following approximation of the function at a interpolation 
particle a:

X
X b

b ab
bb

r m W


 
  

 
                                             (13)

where b is all the particles within the kernel function’s 
support domain. mb and pb are the mass and density of particle 
b, respectively, and weight function or kernel is denoted by           

      ,a babW W r r h
  

   
 

. 

The parameter h is infl uence domain or smoothing domain, 
and controls the size of the area around particle a where 
contribution from the rest of the particles cannot be neglected. 
Considering the computational accuracy and effi ciency [24], 
the following kernel function based on the cubic spline function 
and normalized in two dimensional is adopted:
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where for two dimensional cases 210 / 7D h  . The 
gradient, divergence and Laplacian operators need to be 
formulated in ISPH algorithm. In the current work, the 
following commonly used forms are employed for gradient of 
a scalar A [25]:

2 2
a b aa a b ab

b a b

A A
A m W

 

 
    
 
 


                  (15)

and divergence of a vector  u* [26]:
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                 (16)

where a abW

  is the gradient of the kernel function with 

respect to particle a and calculated as:
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Viscous term is discretized according to the relation given 
in [5]:
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where ab a bA A A
  

  and 2 20.01h   is a parameter to 
avoid a zero denominator. Also Laplacian equation is discretized 
according to the relation given in [27]:
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Resolution of the linear systems are widely studied by 
mathematicians as the demand for an effi cient and smoothly-
converging solver increases from numerical simulations. 
There are numerous iterative methods that are widely used in 
academic and commercial codes to solve the Pressure Poisson 
Equation (PPE). Here two solvers, Conjugate Gradient (CG) and 
Bi-Conjugate Gradient (Bi-CG) [28,29], can be applied to solve 
PPE.

The computational domain is divided into square cells 
of side 2h. Thus, for a particle located inside a cell, only 
the interactions with the particles of the same cell and its 
neighbors need to be considered (only 9 cells in 2-D). The 
searching algorithm is applied at the beginning of each time 
step updating the particle’s neighbors and the corresponding 
kernel derivatives. The time step limit for this method is the 

minimum of three conditions, the CFL, the mass and the 
viscous force conditions such that [26]:

2
, ,

a a aref

h h ht min
fu 

 
  
 
 

                  (20)

where fa is the force per unit mass, equivalent to the 
magnitude of particle acceleration and  uref  is the maximum 
fl uid velocity in the domain [26].

Boundary condition handling

The Lagrangian nature of SPH method will cause the 
implementation of the boundary conditions less straightforward 
than in common mesh based methods. Different boundary 
conditions are used in the SPH method. In the present study, 
moving and stationary solid wall boundary conditions are used. 
There are different boundary types in SPH to simulate solid 
walls, namely the repulsive force [30], ghost or mirror particles 
[31] and dummy particles [12,32]. The repulsive force boundary 
condition, fi rst proposed by Monaghan [30], uses forces similar 
to inter-molecular interactions. A force is exerted on a fl uid 
particle having a distance r from a boundary particle, which has 
the form of Lennard-Jones potential. This force is increased 
as the distance r between a boundary and a fl uid particle is 
decreased, preventing the fl uid particles from penetrating the 
wall, Figure 1.

The mirror particle method is used to enforce the no-
slip as well as the Neumann boundary conditions. In this 
method the particles whose support domain is truncated by 
a solid boundary are refl ected on the other side of the wall. 
The mirror or ghost particles have the same pressure as their 
corresponding fl uid particles but have velocities extrapolated 
from the fl uid and wall velocities.

One of the sources of inaccuracy in the SPH method is 
the truncation of the boundary particles. This means that, 
not enough particles might be present in the support domain 
of a fl uid particle. The other method to model solid walls is 
the use of dummy particles. In this method several layers of 
dummy particles are placed parallel to the boundary particles. 
So, the support domain of the particles located close to the 
solid wall will not be truncated any longer. These layers of 
dummy particles are linked to their corresponding boundary 
particles and have the same pressure and velocity as their 
linked particles. In the present work, dummy particles are used 
to model solid walls.

The number of dummy particle layers are decided from the 

Figure 1: Sketch of repulsive force boundary condition.
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radius of the compact support. In the following simulations, 
three layers of dummy particles are used. Governing equations 
are solved only for fl uid and boundary particles and the pressure 
and velocity (also intermediate velocity) of the dummy particles 
are updated to their corresponding boundary wall particles.

The velocity and the intermediate velocities are held 
constant on the boundary particles, but their pressure is 
calculated from the PPE equation. Afterwards, the pressure 
of the dummy particles are updated to their corresponding 
boundary particles. In this way the Neumann boundary 
condition on the walls is approximated.

Wave characteristics

Three key parameters to identify waves are their lengths and 
heights, and the water depth over which they are propagating. 
All other parameters can be calculated from these quantities, 
e.g. wave induced water accelerations and velocities. A two 
dimensional schematic of a wave propagating in the x direction 
is shown in the Figure 2. The wave length, , is the horizontal 
distance between two successive wave troughs. This length is 
related to the water depth,h, and wave period, T, which is the 
time required for two successive troughs to pass a particular 
point. As the wave moves a distance , in time T, its speed 
called celerity is defi ned as C =/ T.

Solitary waves in constant water depth

Two dimensional dam break fl ow is chosen as the fi rst 

suitable validation test case. Dam break fl ows over dry and 

wet beds have attracted wide research areas due to their 

theoretical, engineering and scientifi c considerations. If a dam 

break occurred over a dry bed, the generated wave is described 

by a tongue of water extended rapidly along the dry bed and if 

dam fl ows toward downstream over the wet bed, the attributed 

fl uid fl ow features become remarkably different and some 

vorticity is developed at the front of the dam break. As a result, 

characteristics of the fl uid fl ow are represented by the wave 

generation, wave crest development, wave breaking, and its 

impact with the downstream calm water and strew of water 

that generates some splash-up fl ow. Due to these features, 

dam break over the wet bed is an interesting benchmark to 

validate the numerical methods [33,34].

Solitary wave propagation in constant water depth is a 

classical benchmark problem for numerical wave model test. 

It propagates without the change of form in constant water 

depth over a fl at bottom. Different analytical theories are 

already developed for the solitary wave. Therefore, it is well 

suited to evaluate the accuracy of the numerical model. For 

example, by checking the free surface location, the quality of 

volume tracking algorithm can be evaluated. In the numerical 

simulation, the free surface elevation and velocity distribution 

prescribed on the incident wave boundary are calculated by 

Third-order Grimshaw solitary wave solution [20,35]:

  2 2 2 2 3 2 2 4 23 5 101,
4 8 80

x t h s s q s q s q   
       

  
              (21)

where  = H/h; H is the wave height; h is the still water 
depth;  /s sech X h ;  /q tanh X h ; X x Ct   in which C 

is the wave speed; the coeffi cient :

                                    (22)

and the wave speed C is:
0.5
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and the velocity distribution is:
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The coordinate system is defi ned in Figure 3. The Grimshaw 
solution is well suited for solitary wave of 0.5  .

The Third order Grimshaw solitary waves is simulated to 
be compared with the analytical theory. Here two still water 
depths of  h=0.2 m and h=0.3 m are assumed (Figure 4) and the 

Figure 2: Schematic wave representation.

Figure 3: Solitary wave representation.
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dimensionless height of desired wave ranging from                  to  

h = 2.0 m are simulated, where particle resolution of 37000 and 
77000 are used for the water depths of h=0.2 m and h=0.3 m, 
respectively. The computational domain is 50h in the stream 
wise direction x and 2h in the vertical direction y. In the stream 
wise direction, 1260 and 1860 particles with uniform grid size 
of 0.008 r m   are used, while we use 50 and 75 particles 
in the vertical direction in two cases, respectively. The fl uid 
has a density of 31000  /kg m  and kinematic viscosity of 

6 21 10   /m s   .Three layers of dummy particles are used to 
handle the wall boundary condition.

Figure 5 shows the free surface elevation profi les at three 
different times (1, 3 and 5 seconds from beginning of the 
simulation) corresponding to solitary waves generated using 
the Third order Grimshaw method for a water column with 

0.3 h m  and 0.4 . It is noticeable that compared with the 
analytical solution, the wave profi le heights are decreased as 
it follows throughout the channel. The discrepancy between 
the predicted and analytical heights are 10% when the wave 
propagates along the channel for fi rst 5 seconds.

On Figure 6(a), the paddle laws of motion corresponding 
to the Third order wave generation is plotted for 0.4  for 
a water column with 0.3 h m . Greatest accelerations occur 
somewhere between the beginning of motion (zero velocity) 
and mid-stroke (maximum velocity). Qualitatively, the larger 
the maximum velocity and the shorter the duration of motion, 
the greater the acceleration. For the same wave we also plot on 
Figure 6 (b) the dimensionless paddle velocity corresponding 
to this law of motion. The maximum nondimensionalized 
velocity of 0.27 is observed.

Measurements of the free surface elevation at different 
distances from the paddle for a solitary wave of desired 
dimensionless amplitude 0.2   in a water column of 

0.2 mh   where was generated using Third order numerical 
integration are plotted on Figure 7. The solitary wave amplitude 
is decreases slowly as it travels along the channel.

Figure 8 shows the nondimensionalized velocity component 
variations versus nondimensionalized vertical coordinate of 
the wave at 1.5 t s  from the beginning of the simulation 
for two locations ( 2 x m  and 3 x m  regarding the initial 

Figure 4: Initial particle distribution of solitary wave generation test case for h = 
0.2  m h=0.2 m.

Figure 5: Solitary wave profi le comparisons with analytic ones at various times for 
ε=0.4 and a water column of h=0.3 m

Figure 6: Paddle motion for E = 0.2 and a water column of h=0.3 m

paddle location). The velocity profi les are close to the analytic 
ones. Near the water surface, under both wave surfaces, the 
measured particle horizontal velocity is somewhat greater than 
the theoretical values, while the vertical velocity components is 
underestimated compared with the analytic ones, the reason of 
which may be due to the particle resolution.

The fl ow fi eld contours at three different times are 
illustrated in Figures (9-11) for the 0.3  case for a water 
column of             . As seen, the pressures are captured precisely 
and the pressure distributions under the wave crests are 
accurately predicted, Figure 9. The wave speed at this case is 

1.59  /C m s , that proves the wave crest propagation at these 
selected times, where the wave crest transferred to x = 2.61 m, 
x = 5.83 m and x = 9.05 m, respectively, Figure 10. Furthermore, 
the symmetric behavior of the vertical velocity at the wave is 
noticeable at these selected times, Figure 11.

0.2 h m

0.3
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Figure 7: Comparison of record of free surface elevation at different distances 
from the paddle with analytic ones.

Figure 8: Comparisons of velocity components with analytical results at t=1.5 s at 
different distances away from the paddle initial location.

Figure 9: Solitary wave pressure contour.

Figure 10: Solitary wave horizontal velocity contour.
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Figure 11: Solitary wave vertical velocity contour.

Figure 12: Maximum paddle velocity and displacement for a solitary wave with 
h=0.3 m

In order to investigate the solitary wave generated behavior 
on the pureness of the generated wave on other wave heights, 
this problem is solved for a wide range of the desired wave 
heights, 0.1 0.6  . As expected, greater the desired wave 
height, the greater amount of the water volume must be 
pushed. Figure 12(a) illustrates the depth averaged net mass 
displacement L of a solitary wave. This net mass displacement 
is the total stroke of the paddle prescribed in each procedure. 
The rate of the displacement increment is decreased as the 
desired wave height is increased. Furthermore, the maximum 
paddle velocity (which occurs at mid-stroke) is obtained for 
this range of wave heights. Again, the slope of the maximum 
paddle velocity is decreases as dimensionless amplitude 
increases.

The dimensionless phase speed (or Froude number, 
/F C gh ) is plotted on Figure 13(a) for the selected wave 

height range. It shows that the Third order method phase 
speed is matches to the Byatt-Smith numerical estimation 
in the studied range of . The dimensionless outskirts decay 
coeffi cient  2 .  h  versus the dimensionless amplitude 
is plotted on Figure 13(b). This outskirts decay coeffi cient 
describes the way free surface elevation tends towards the 
mean level at infi nity. Stokes showed that  is a solution of the 
following equation, also used by Byatt-Smith [36]:

2 tanF 


                  (25)

Figure 13: Wave parameters for a solitary wave with h=0.3 m. The Byatt-Smith’s 
numerical solution [36] is plotted as stars.
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As a matter of fact the Third order method for 0.4
matches the Byatt-Smith reference but for greater  some 
discrepancy is observed.

Conclusion and Future Works

The ISPH numerical method is used to simulate the 
solitary wave generation and propagation along the channel at 
different wave amplitudes and water depths in an ISPH-based 
numerical wave fl ume. The numerical results are compared 
with analytical data in terms of free surface displacements, 
fl uid particle velocity, phase speed, fl ow fi eld counters and 
some other wave parameters.

In the fi rst section, the free surface profi le variations over 
time, position and through solitary wave amplitude ranges are 
assumed. The numerical free surface profi les are compared 
with analytical results at various times and it is proved that 
studied Grimshaw Third order method has acceptable relative 
variation for 5 seconds after the wave propagation, about 10%.

In the second section, solitary wave paddle motions, paddle 
velocities and accelerations, their displacements, phase speeds 
and outskirts decay coeffi cients are assumed. Results were in 
a good agreement with the analytical data. Then, maximum 
paddle velocity and displacement of the wave generation 
procedures are derived and as seen they coincide with the 
analytical data. Based on the obtained results, I am continuing 
this methodology in the two solitary waves runup, the C-wave 
in sloped beachesm ship motions in the regular waves and 
breaking criteria for two solitary waves investigations in the 
in-hand studoes.
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